The impact of operating system scheduling policies and synchronization methods of performance of parallel applications

Author:

Gupta Anoop,Tucker Andrew,Urushibara Shigeru

Abstract

Shared-memory multiprocessors are frequently used as compute servers with multiple parallel applications executing at the same time. In such environments, the efficiency of a parallel application can be significantly affected by the operating system scheduling policy. In this paper, we use detailed simulation studies to evaluate the performance of several different scheduling strategies, These include regular priority scheduling, coscheduling or gang scheduling, process control with processor partitioning, handoff scheduling, and affinity-based scheduling. We also explore tradeoffs between the use of busy-waiting and blocking synchronization primitives and their interactions with the scheduling strategies. Since effective use of caches is essential to achieving high performance, a key focus is on the impact of the scheduling strategies on the caching behavior of the applications.Our results show that in situations where the number of processes exceeds the number of processors, regular priority-based scheduling in conjunction with busy-waiting synchronization primitives results in extremely poor processor utilization. In such situations, use of blocking synchronization primitives can significantly improve performance. Process control and gang scheduling strategies are shown to offer the highest performance, and their performance is relatively independent of the synchronization method used. However, for applications that have sizable working sets that fit into the cache, process control performs better than gang scheduling. For the applications considered, the performance gains due to handoff scheduling and processor affinity are shown to be small.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inducing Huge Tail Latency on a MongoDB deployment;2023 IEEE International Conference on Cloud Engineering (IC2E);2023-09-25

2. Principled Schedulability Analysis for Distributed Storage Systems Using Thread Architecture Models;ACM Transactions on Storage;2023-03-06

3. Fault-Tolerant Network-On-Chip;Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design;2023

4. Fault-Tolerant General Purposed Processors;Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design;2023

5. GPU accelerated Cartesian GRAPPA reconstruction using CUDA;Journal of Magnetic Resonance;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3