Non-contact Monitoring of Fatigue Driving Using FMCW Millimeter Wave Radar

Author:

Chen Honghong1ORCID,Han Xinyu1ORCID,Hao Zhanjun1ORCID,Yan Hao1ORCID,Yang Jie1ORCID

Affiliation:

1. Northwest Normal University, China

Abstract

Fatigue driving is the leading cause of severe traffic accidents, which is considered as an important point of the research. Although a precise definition of fatigue is lacking, it is possible to detect the physiological characteristics of the human body to determine whether a person is fatigued, such as head shaking, yawning, and a significant drop in breathing. In our study, fatigue actions were collected first, and then the different micro-Doppler characteristics produced by human activity were used to classify and recognize the fatigue action using the fine-tuning convolution neural network (FT-CNN) model. The collected signals in the breathing mode were preprocessed to judge whether the person was fatigued according to the estimated value of the respiratory rate. Data in different environments were collected to verify the proposed method. Our results showed that the accuracy of fatigue detection can reach 91.8% in the laboratory environment and 87.3% in realistic scenarios.

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Information Systems,Hardware and Architecture,Computer Science Applications,Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Driver Activity Dataset with Multiple RGB-D Cameras and mmWave Radars;Proceedings of the ACM Multimedia Systems Conference 2024 on ZZZ;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3