Affiliation:
1. Jiangxi University of Technology, Nanchang 330098, China
Abstract
Driver fatigue has become an important factor to traffic accidents worldwide, and effective detection of driver fatigue has major significance for public health. The purpose method employs entropy measures for feature extraction from a single electroencephalogram (EEG) channel. Four types of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE), and spectral entropy (PE), were deployed for the analysis of original EEG signal and compared by ten state-of-the-art classifiers. Results indicate that optimal performance of single channel is achieved using a combination of channel CP4, feature FE, and classifier Random Forest (RF). The highest accuracy can be up to 96.6%, which has been able to meet the needs of real applications. The best combination of channel + features + classifier is subject-specific. In this work, the accuracy of FE as the feature is far greater than the Acc of other features. The accuracy using classifier RF is the best, while that of classifier SVM with linear kernel is the worst. The impact of channel selection on the Acc is larger. The performance of various channels is very different.
Funder
Science and Technology Key Project of Jiangxi Provincial Department of Education
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献