On abstraction refinement for program analyses in Datalog

Author:

Zhang Xin1,Mangal Ravi1,Grigore Radu2,Naik Mayur1,Yang Hongseok2

Affiliation:

1. Georgia Institute of Technology

2. Oxford University

Abstract

A central task for a program analysis concerns how to efficiently find a program abstraction that keeps only information relevant for proving properties of interest. We present a new approach for finding such abstractions for program analyses written in Datalog. Our approach is based on counterexample-guided abstraction refinement: when a Datalog analysis run fails using an abstraction, it seeks to generalize the cause of the failure to other abstractions, and pick a new abstraction that avoids a similar failure. Our solution uses a boolean satisfiability formulation that is general, complete, and optimal: it is independent of the Datalog solver, it generalizes the failure of an abstraction to as many other abstractions as possible, and it identifies the cheapest refined abstraction to try next. We show the performance of our approach on a pointer analysis and a typestate analysis, on eight real-world Java benchmark programs.

Funder

National Science Foundation

Engineering and Physical Sciences Research Council

Defense Advanced Research Projects Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eagle;ACM Transactions on Software Engineering and Methodology;2021-10-31

2. Accelerating Program Analyses in Datalog by Merging Library Facts;Static Analysis;2021

3. Mitigating power side channels during compilation;Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2019-08-12

4. Core-Boosted Linear Search for Incomplete MaxSAT;Integration of Constraint Programming, Artificial Intelligence, and Operations Research;2019

5. Per-Dereference Verification of Temporal Heap Safety via Adaptive Context-Sensitive Analysis;Static Analysis;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3