Eagle

Author:

Lu Jingbo1ORCID,He Dongjie1,Xue Jingling1

Affiliation:

1. UNSW Sydney, Kensington, NSW, Australia

Abstract

Object sensitivity is widely used as a context abstraction for computing the points-to information context-sensitively for object-oriented programming languages such as Java. Due to the combinatorial explosion of contexts in large object-oriented programs, k -object-sensitive pointer analysis (under k -limiting), denoted k -obj , is often inefficient even when it is scalable for small values of k , where k ⩽ 2 holds typically. A recent popular approach for accelerating k -obj trades precision for efficiency by instructing k -obj to analyze only some methods in a program context-sensitively, determined heuristically by a pre-analysis. In this article, we investigate how to develop a fundamentally different approach, Eagle , for designing a pre-analysis that can make k -obj run significantly faster while maintaining its precision. The novelty of Eagle is to enable k -obj to analyze a method with partial context sensitivity (i.e., context-sensitively for only some of its selected variables/allocation sites) by solving a context-free-language (CFL) reachability problem based on a new CFL-reachability formulation of k -obj . By regularizing one CFL for specifying field accesses and using another CFL for specifying method calls, we have formulated Eagle as a fully context-sensitive taint analysis (without k -limiting) that is both effective (by selecting the variables/allocation sites to be analyzed by k -obj context-insensitively so as to reduce the number of context-sensitive facts inferred by k -obj in the program) and efficient (by running linearly in terms of the number of pointer assignment edges in the program). As Eagle represents the first precision-preserving pre-analysis, our evaluation focuses on demonstrating its significant performance benefits in accelerating k -obj for a set of popular Java benchmarks and applications, with call graph construction, may-fail-casting, and polymorphic call detection as three important client analyses.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cocktail Approach to Practical Call Graph Construction;Proceedings of the ACM on Programming Languages;2023-10-16

2. A Container-Usage-Pattern-Based Context Debloating Approach for Object-Sensitive Pointer Analysis;Proceedings of the ACM on Programming Languages;2023-10-16

3. Context Sensitivity without Contexts: A Cut-Shortcut Approach to Fast and Precise Pointer Analysis;Proceedings of the ACM on Programming Languages;2023-06-06

4. IFDS-based Context Debloating for Object-Sensitive Pointer Analysis;ACM Transactions on Software Engineering and Methodology;2023-05-27

5. Understanding the Threats of Upstream Vulnerabilities to Downstream Projects in the Maven Ecosystem;2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3