Leveraging the core-level complementary effects of PVT variations to reduce timing emergencies in multi-core processors

Author:

Yan Guihai1,Liang Xiaoyao2,Han Yinhe1,Li Xiaowei1

Affiliation:

1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2. NVIDIA Corporation, Sunnyvale CA, USA

Abstract

Process, Voltage, and Temperature (PVT) variations can significantly degrade the performance benefits expected from next nanoscale technology. The primary circuit implication of the PVT variations is the resultant timing emergencies. In a multi-core processor running multiple programs, variations create spatial and temporal unbalance across the processing cores. Most prior schemes are dedicated to tolerating PVT variations individually for a single core, but ignore the opportunity of leveraging the complementary effects between variations and the intrinsic variation unbalance among individual cores. We find that the notorious delay impacts from different variations are not necessary aggregated. Cores with mild variations can share the violent workload from cores suffering large variations. If operated correctly, variations on different cores can help mitigating each other and result in a variation-mild environment. In this paper, we propose Timing Emergency Aware Thread Migration (TEA-TM), a delay sensor-based scheme to reduce system timing emergencies under PVT variations. Fourier transform and frequency domain analysis are conducted to provide the insights and the potential of the PVT co-optimization scheme. Experimental results show on average TEA-TM can help save up to 24% throughput loss, at the same time improve the system fairness by 85%.

Publisher

Association for Computing Machinery (ACM)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault-Tolerant General Purposed Processors;Built-in Fault-Tolerant Computing Paradigm for Resilient Large-Scale Chip Design;2023

2. A Survey of Architectural Techniques for Managing Process Variation;ACM Computing Surveys;2016-05-02

3. CoreRank: Redeeming “Sick Silicon” by Dynamically Quantifying Core-Level Healthy Condition;IEEE Transactions on Computers;2016-03-01

4. Orchestrator: Guarding Against Voltage Emergencies in Multithreaded Applications;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2014-12

5. Globally precise-restartable execution of parallel programs;Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation;2014-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3