SAKE

Author:

Lin Mingkai1,Li Wenzhong2ORCID,Song Lynda J.3,Nguyen Cam-Tu1,Wang Xiaoliang1,Lu Sanglu2

Affiliation:

1. Nanjing University, Nanjing, Jiangsu, China

2. State Key Laboratory for Novel Software Technology and Sino-German Institutes of Social Computing, Nanjing University, Nanjing, Jiangsu, China

3. University of Leeds, UK

Abstract

Katz centrality is a fundamental concept to measure the influence of a vertex in a social network. However, existing approaches to calculating Katz centrality in a large-scale network are unpractical and computationally expensive. In this article, we propose a novel method to estimate Katz centrality based on graph sampling techniques, which object to achieve comparable estimation accuracy of the state-of-the-arts with much lower computational complexity. Specifically, we develop a Horvitz–Thompson estimate for Katz centrality by using a multi-round sampling approach and deriving an unbiased mean value estimator. We further propose SAKE , a S ampling-based A lgorithm for fast K atz centrality E stimation. We prove that the estimator calculated by SAKE is probabilistically guaranteed to be within an additive error from the exact value. Extensive evaluation experiments based on four real-world networks show that the proposed algorithm can estimate Katz centralities for partial vertices with low sampling rate, low computation time, and it works well in identifying high influence vertices in social networks.

Funder

Sino-German Institutes of Social Computing

Key R&D Program of Jiangsu Province, China

National Key R&D Program of China

National Natural Science Foundation of China

Collaborative Innovation Center of Novel Software Technology and Industrialization

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference42 articles.

1. 2017. Livemocha network dataset – KONECT. Retrieved from http://konect.uni-koblenz.de/networks/livemocha. 2017. Livemocha network dataset – KONECT. Retrieved from http://konect.uni-koblenz.de/networks/livemocha.

2. Network Sampling

3. Total communicability as a centrality measure

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3