An Experimental Study on the Scalability of Recent Node Centrality Metrics in Sparse Complex Networks

Author:

Freund Alexander J.,Giabbanelli Philippe J.

Abstract

Node centrality measures are among the most commonly used analytical techniques for networks. They have long helped analysts to identify “important” nodes that hold power in a social context, where damages could have dire consequences for transportation applications, or who should be a focus for prevention in epidemiology. Given the ubiquity of network data, new measures have been proposed, occasionally motivated by emerging applications or by the ability to interpolate existing measures. Before analysts use these measures and interpret results, the fundamental question is: are these measures likely to complete within the time window allotted to the analysis? In this paper, we comprehensively examine how the time necessary to run 18 new measures (introduced from 2005 to 2020) scales as a function of the number of nodes in the network. Our focus is on giving analysts a simple and practical estimate for sparse networks. As the time consumption depends on the properties in the network, we nuance our analysis by considering whether the network is scale-free, small-world, or random. Our results identify that several metrics run in the order of O(nlogn) and could scale to large networks, whereas others can require O(n2) or O(n3) and may become prime targets in future works for approximation algorithms or distributed implementations.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference86 articles.

1. K-path centrality: a new centrality measure in social networks,;Alahakoon,2011

2. Big data 2014: The fourth ASE international conference big data,Cambridge, MAHarvard UniversityProceedings of the 2014 ASE BigData/SocialInformatics/PASSAT/BioMedCom 2014 Conference2014

3. Which models are used in social simulation to generate social networks? a review of 17 years of publications in jasss,;Amblard,2015

4. A systematic survey of centrality measures for protein-protein interaction networks;Ashtiani;BMC Syst. Biol,2018

5. Capturing the fast-food landscape in england using large-scale network analysis;Baniukiewicz;EPJ Data Sci,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3