Strategy synthesis for linear arithmetic games

Author:

Farzan Azadeh1,Kincaid Zachary2

Affiliation:

1. University of Toronto, Canada

2. Princeton University, USA

Abstract

Many problems in formal methods can be formalized as two-player games. For several applications—program synthesis, for example—in addition to determining which player wins the game, we are interested in computing a winning strategy for that player. This paper studies the strategy synthesis problem for games defined within the theory of linear rational arithmetic. Two types of games are considered. A satisfiability game , described by a quantified formula, is played by two players that take turns instantiating quantifiers. The objective of each player is to prove (or disprove) satisfiability of the formula. A reachability game , described by a pair of formulas defining the legal moves of each player, is played by two players that take turns choosing positions—rational vectors of some fixed dimension. The objective of each player is to reach a position where the opposing player has no legal moves (or to play the game forever). We give a complete algorithm for synthesizing winning strategies for satisfiability games and a sound (but necessarily incomplete) algorithm for synthesizing winning strategies for reachability games.

Funder

Natural Sciences and Engineering Research Council of Canada

Ontario Ministry of Research

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solving Infinite-State Games via Acceleration;Proceedings of the ACM on Programming Languages;2024-01-05

2. Church synthesis on register automata over linearly ordered data domains;Formal Methods in System Design;2023-10-10

3. Symbolic Fixpoint Algorithms for Logical LTL Games;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

4. Boolean Abstractions for Realizability Modulo Theories;Computer Aided Verification;2023

5. Software model-checking as cyclic-proof search;Proceedings of the ACM on Programming Languages;2022-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3