Hyperproperty Verification as CHC Satisfiability

Author:

Itzhaky Shachar,Shoham Sharon,Vizel Yakir

Abstract

AbstractHyperproperties specify the behavior of a system across multiple executions, and are an important extension of regular temporal properties. So far, such properties have resisted comprehensive treatment by software model-checking approaches such as IC3/PDR, due to the need to find not only an inductive invariant but also a total alignment of different executions that facilitates simpler inductive invariants.We show how this treatment is achieved via a reduction from the verification problem of $$\forall ^*\exists ^*$$ hyperproperties to Constrained Horn Clauses (CHCs). Our starting point is a set of universally quantified formulas in first-order logic (modulo theories) that encode the verification of $$\forall ^*\exists ^*$$ hyperproperties over infinite-state transition systems. The first-order encoding uses uninterpreted predicates to capture the (1) witness function for existential quantification over traces, (2) alignment of executions, and (3) corresponding inductive invariant. Such an encoding was previously proposed for k-safety properties. Unfortunately, finding a satisfying model for the resulting first-order formulas is beyond reach for modern first-order satisfiability solvers. Previous works tackled this obstacle by developing specialized solvers for the aforementioned first-order formulas. In contrast, we show that the same problems can be encoded as CHCs and solved by existing CHC solvers. CHC solvers take advantage of the unique structure of CHC formulas and handle the combination of quantifiers with theories and uninterpreted predicates more efficiently.Our key technical contribution is a logical transformation of the aforementioned sets of first-order formulas to equi-satisfiable sets of CHCs. The transformation to CHCs is sound and complete, and applying it to the first-order formulas that encode verification of hyperproperties leads to a CHC encoding of these problems. We implemented the CHC encoding in a prototype tool and show that, using existing CHC solvers for solving the CHCs, the approach already outperforms state-of-the-art tools for hyperproperty verification by orders of magnitude.

Publisher

Springer Nature Switzerland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Syntax-Guided Automated Program Repair for Hyperproperties;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3