Raising expectations: automating expected cost analysis with types

Author:

Wang Di1,Kahn David M.1,Hoffmann Jan1

Affiliation:

1. Carnegie Mellon University, USA

Abstract

This article presents a type-based analysis for deriving upper bounds on the expected execution cost of probabilistic programs. The analysis is naturally compositional, parametric in the cost model, and supports higher-order functions and inductive data types. The derived bounds are multivariate polynomials that are functions of data structures. Bound inference is enabled by local type rules that reduce type inference to linear constraint solving. The type system is based on the potential method of amortized analysis and extends automatic amortized resource analysis (AARA) for deterministic programs. A main innovation is that bounds can contain symbolic probabilities, which may appear in data structures and function arguments. Another contribution is a novel soundness proof that establishes the correctness of the derived bounds with respect to a distribution-based operational cost semantics that also includes nontrivial diverging behavior. For cost models like time, derived bounds imply termination with probability one. To highlight the novel ideas, the presentation focuses on linear potential and a core language. However, the analysis is implemented as an extension of Resource Aware ML and supports polynomial bounds and user defined data structures. The effectiveness of the technique is evaluated by analyzing the sample complexity of discrete distributions and with a novel average-case estimation for deterministic programs that combines expected cost analysis with statistical methods.

Funder

Defense Advanced Research Projects Agency

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards logical foundations for probabilistic computation;Annals of Pure and Applied Logic;2023-07

2. Automatic Amortized Resource Analysis with Regular Recursive Types;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

3. Automated Expected Value Analysis of Recursive Programs;Proceedings of the ACM on Programming Languages;2023-06-06

4. A Calculus for Amortized Expected Runtimes;Proceedings of the ACM on Programming Languages;2023-01-09

5. Proving Almost-Sure Innermost Termination of Probabilistic Term Rewriting Using Dependency Pairs;Automated Deduction – CADE 29;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3