Dynamic Scheduling of Cybersecurity Analysts for Minimizing Risk Using Reinforcement Learning

Author:

Ganesan Rajesh1,Jajodia Sushil1,Shah Ankit1,Cam Hasan2

Affiliation:

1. George Mason University, Fairfax, VA

2. Army Research Laboratory, Adelphi, Maryland

Abstract

An important component of the cyber-defense mechanism is the adequate staffing levels of its cybersecurity analyst workforce and their optimal assignment to sensors for investigating the dynamic alert traffic. The ever-increasing cybersecurity threats faced by today’s digital systems require a strong cyber-defense mechanism that is both reactive in its response to mitigate the known risk and proactive in being prepared for handling the unknown risks. In order to be proactive for handling the unknown risks, the above workforce must be scheduled dynamically so the system is adaptive to meet the day-to-day stochastic demands on its workforce (both size and expertise mix). The stochastic demands on the workforce stem from the varying alert generation and their significance rate, which causes an uncertainty for the cybersecurity analyst scheduler that is attempting to schedule analysts for work and allocate sensors to analysts. Sensor data are analyzed by automatic processing systems, and alerts are generated. A portion of these alerts is categorized to be significant , which requires thorough examination by a cybersecurity analyst. Risk, in this article, is defined as the percentage of significant alerts that are not thoroughly analyzed by analysts. In order to minimize risk, it is imperative that the cyber-defense system accurately estimates the future significant alert generation rate and dynamically schedules its workforce to meet the stochastic workload demand to analyze them. The article presents a reinforcement learning-based stochastic dynamic programming optimization model that incorporates the above estimates of future alert rates and responds by dynamically scheduling cybersecurity analysts to minimize risk (i.e., maximize significant alert coverage by analysts) and maintain the risk under a pre-determined upper bound. The article tests the dynamic optimization model and compares the results to an integer programming model that optimizes the static staffing needs based on a daily-average alert generation rate with no estimation of future alert rates (static workforce model). Results indicate that over a finite planning horizon, the learning-based optimization model, through a dynamic (on-call) workforce in addition to the static workforce, (a) is capable of balancing risk between days and reducing overall risk better than the static model, (b) is scalable and capable of identifying the quantity and the right mix of analyst expertise in an organization, and (c) is able to determine their dynamic (on-call) schedule and their sensor-to-analyst allocation in order to maintain risk below a given upper bound. Several meta-principles are presented, which are derived from the optimization model, and they further serve as guiding principles for hiring and scheduling cybersecurity analysts. Days-off scheduling was performed to determine analyst weekly work schedules that met the cybersecurity system’s workforce constraints and requirements.

Funder

Army Research Office

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3