Applied Machine Learning for Information Security

Author:

Samtani Sagar1ORCID,Raff Edward2ORCID,Anderson Hyrum3ORCID

Affiliation:

1. Indiana University, Bloomington, USA

2. Booz Allen Hamilton, University of Maryland, Baltimore County, Baltimore, USA

3. Robust Intelligence, Boise, USA

Abstract

Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the past half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information security practices. The Conference on Applied Machine Learning (CAMLIS) is an emerging venue that seeks to gather researchers and practitioners to discuss applied and fundamental research on machine learning for information security applications. In 2021, CAMLIS partnered with ACM Digital Threats: Research and Practice (DTRAP) to provide opportunities for authors of accepted CAMLIS papers to submit their research for consideration into ACM DTRAP via a Special Issue on Applied Machine Learning for Information Security. This editorial summarizes the results of this Special Issue.

Publisher

Association for Computing Machinery (ACM)

Reference59 articles.

1. B. Ampel, S. Samtani, S. Ullman, and H. Chen. 2021. Linking common vulnerabilities and exposures to the mitre ATT&CK framework: A self-distillation approach. In Proceedings of the ACM KDD Workshop on AI-enabled Analytics for Cybersecurity. 1–6. Retrieved from http://arxiv.org/abs/2108.01696

2. Benjamin Ampel and Hsinchun Chen. 2021. Distilling contextual embeddings into a static word embedding for improving hacker forum analytics. In Proceedings of the IEEE International Conference on Intelligence and Security Informatics (ISI’21). ieeexplore.ieee.org, 1–3. DOI:10.1109/ISI53945.2021.9624848

3. Improving Threat Mitigation Through a Cybersecurity Risk Management Framework: A Computational Design Science Approach

4. Benjamin Ampel, Sagar Samtani, Hongyi Zhu, Steven Ullman, and Hsinchun Chen. 2020. Labeling hacker exploits for proactive cyber threat intelligence: A deep transfer learning approach. In Proceedings of the IEEE International Conference on Intelligence and Security Informatics (ISI’20). 1–6. DOI:10.1109/ISI49825.2020.9280548

5. H. S. Anderson and P. Roth. 2018. Ember: An open dataset for training static pe malware machine learning models. Retrieved from http://arxiv.org/abs/1804.04637

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3