Workload Characterization

Author:

Shishira S. R.1,Kandasamy A.1,Chandrasekaran K.1

Affiliation:

1. NITK Surathkal Karnataka, India

Publisher

ACM Press

Reference33 articles.

1. Arshdeep Bahga, Vijay Krishna Madisetti, et al. 2011. Synthetic workload generation for cloud computing applications. Journal of Software Engineering and Applications 4, 07 (2011), 396.

2. Robert Birke, Andrej Podzimek, Lydia Y Chen, and Evgenia Smirni. 2013. State-of-the-practice in data center virtualization: Toward a better understanding of VM usage. In Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference on. IEEE, 1--12.

3. W Todd Boyd and Renato J Recio. 1999. I/O workload characteristics of modern servers. In Workload Characterization: Methodology and Case Studies, 1999. IEEE, 87--96.

4. Harold W Cain, Ravi Rajwar, Morris Marden, and Mikko H Lipasti. 2001. An architectural evaluation of Java TPC-W. In High-Performance Computer Architecture, 2001. HPCA. The Seventh International Symposium on. IEEE, 229--240.

5. Maria Calzarossa, Luisa Massari, and Daniele Tessera. 2000. Workload characterization issues and methodologies. Performance Evaluation: Origins and Directions (2000), 459--482. http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimating Power Consumption of Collocated Workloads in a Real-World Data Center;2023 International Conference on Software, Telecommunications and Computer Networks (SoftCOM);2023-09-21

2. Auto-tuning elastic applications in production;2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP);2023-05

3. DeGTeC: A deep graph-temporal clustering framework for data-parallel job characterization in data centers;Future Generation Computer Systems;2023-04

4. D-wash – A dynamic workload aware adaptive cache coherance protocol for multi-core processor system;Microelectronics Journal;2023-02

5. A priority-aware scheduling framework for heterogeneous workloads in container-based cloud;Applied Intelligence;2022-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3