MFFT: A GPU Accelerated Highly Efficient Mixed-Precision Large-Scale FFT Framework

Author:

Zhao Yuwen1ORCID,Liu Fangfang2ORCID,Ma Wenjing2ORCID,Li Huiyuan2ORCID,Peng Yuanchi1ORCID,Wang Cui3ORCID

Affiliation:

1. Institute of Software, Chinese Academy of Sciences, China and University of Chinese Academy of Sciences, China

2. Institute of Software, Chinese Academy of Sciences, China and State Key Laboratory of Computer Science, China

3. Institute of Software, Chinese Academy of Sciences, China

Abstract

Fast Fourier transform (FFT) is widely used in computing applications in large-scale parallel programs, and data communication is the main performance bottleneck of FFT and seriously affects its parallel efficiency. To tackle this problem, we propose a new large-scale FFT framework, MFFT, which optimizes parallel FFT with a new mixed-precision optimization technique, adopting the “high precision computation, low precision communication” strategy. To enable “low precision communication”, we propose a shared-exponent floating-point number compression technique, which reduces the volume of data communication, while maintaining higher accuracy. In addition, we apply a two-phase normalization technique to further reduce the round-off error. Based on the mixed-precision MFFT framework, we apply several optimization techniques to improve the performance, such as streaming of GPU kernels, MPI message combination, kernel optimization, and memory optimization. We evaluate MFFT on a system with 4,096 GPUs. The results show that shared-exponent MFFT is 1.23 × faster than that of double-precision MFFT on average, and double-precision MFFT achieves performance 3.53× and 9.48× on average higher than open source library 2Decomp&FFT (CPU-based version) and heFFTe (AMD GPU-based version), respectively. The parallel efficiency of double-precision MFFT increased from 53.2% to 78.1% compared with 2Decomp&FFT, and shared-exponent MFFT further increases the parallel efficiency to 83.8%.

Funder

National Key R&D Program of China

GHfund D

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference52 articles.

1. 2018. NVIDIA APEX.https://github.com/NVIDIA/apex.

2. 2019. CUFFT library. https://docs.nvidia.com/pdf/CUFFT_Library.pdf.

3. 2021. rocFFT Documentation. https://rocfft.readthedocs.io/en/rocm-4.2.0/.

4. 2022. heFFTe.https://bitbucket.org/icl/heffte.

5. 2022. Large-scale atomic/molecular massively parallel simulator. https://lammps.sandia.gov/.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Optimized GPU Implementation for GIST Descriptor;ACM Transactions on Architecture and Code Optimization;2024-08-23

2. EA4RCA: Efficient AIE accelerator design framework for regular Communication-Avoiding Algorithm;ACM Transactions on Architecture and Code Optimization;2024-07-15

3. Research on High-Performance Fourier Transform Algorithms Based on the NPU;Applied Sciences;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3