Reconstruction of Personalized 3D Face Rigs from Monocular Video

Author:

Garrido Pablo1,Zollhöfer Michael1,Casas Dan1,Valgaerts Levi1,Varanasi Kiran2,Pérez Patrick3,Theobalt Christian1

Affiliation:

1. Max-Planck-Institute for Informatics, Saarbrücken, Germany

2. Technicolor

3. Technicolor, Cesson Sévigné Cedex, France

Abstract

We present a novel approach for the automatic creation of a personalized high-quality 3D face rig of an actor from just monocular video data (e.g., vintage movies). Our rig is based on three distinct layers that allow us to model the actor’s facial shape as well as capture his person-specific expression characteristics at high fidelity, ranging from coarse-scale geometry to fine-scale static and transient detail on the scale of folds and wrinkles. At the heart of our approach is a parametric shape prior that encodes the plausible subspace of facial identity and expression variations. Based on this prior, a coarse-scale reconstruction is obtained by means of a novel variational fitting approach. We represent person-specific idiosyncrasies, which cannot be represented in the restricted shape and expression space, by learning a set of medium-scale corrective shapes. Fine-scale skin detail, such as wrinkles, are captured from video via shading-based refinement, and a generative detail formation model is learned. Both the medium- and fine-scale detail layers are coupled with the parametric prior by means of a novel sparse linear regression formulation. Once reconstructed, all layers of the face rig can be conveniently controlled by a low number of blendshape expression parameters, as widely used by animation artists. We show captured face rigs and their motions for several actors filmed in different monocular video formats, including legacy footage from YouTube, and demonstrate how they can be used for 3D animation and 2D video editing. Finally, we evaluate our approach qualitatively and quantitatively and compare to related state-of-the-art methods.

Funder

Technicolor

ERC Starting Grant CapReal

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of motion retargeting techniques for 3D character facial animation;Computers & Graphics;2024-10

2. Generating animatable 3D cartoon faces from single portraits;Virtual Reality & Intelligent Hardware;2024-08

3. Toonify3D: StyleGAN-based 3D Stylized Face Generator;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

4. 3D Gaussian Blendshapes for Head Avatar Animation;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

5. EMOVA: Emotion-driven neural volumetric avatar;Image and Vision Computing;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3