Linear combination of transformations

Author:

Alexa Marc1

Affiliation:

1. Technische Universität Darmstadt

Abstract

Geometric transformations are most commonly represented as square matrices in computer graphics. Following simple geometric arguments we derive a natural and geometrically meaningful definition of scalar multiples and a commutative addition of transformations based on the matrix representation, given that the matrices have no negative real eigenvalues. Together, these operations allow the linear combination of transformations. This provides the ability to create weighted combination of transformations, interpolate between transformations, and to construct or use arbitrary transformations in a structure similar to a basis of a vector space. These basic techniques are useful for synthesis and analysis of motions or animations. Animations through a set of key transformations are generated using standard techniques such as subdivision curves. For analysis and progressive compression a PCA can be applied to sequences of transformations. We describe an implementation of the techniques that enables an easy-to-use and transparent way of dealing with geometric transformations in graphics software. We compare and relate our approach to other techniques such as matrix decomposition and quaternion interpolation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference32 articles.

1. Representing animations by principal components;ALEXA M.;Computer Graphics Forum,2000

2. BARR A. H. CURRIN B. GABRIEL S. AND HUGHES J. F. 1992. Smooth interpolation of orientations with angular velocity constraints using quaternions. Computer Graphics (Proceedings of SIGGRAPH 92) 26 2 (July) 313-320. ISBN 0-201-51585-7. Held in Chicago Illinois. 10.1145/133994.134086 BARR A. H. CURRIN B. GABRIEL S. AND HUGHES J. F. 1992. Smooth interpolation of orientations with angular velocity constraints using quaternions. Computer Graphics (Proceedings of SIGGRAPH 92) 26 2 (July) 313-320. ISBN 0-201-51585-7. Held in Chicago Illinois. 10.1145/133994.134086

3. BARTELS R. H. BEATTY J. C. AND BARSKY B. A. 1985. An introduction to the use of splines in computer graphics. BARTELS R. H. BEATTY J. C. AND BARSKY B. A. 1985. An introduction to the use of splines in computer graphics.

4. The matrix sign function and computations in systems;DENMAN E. D.;Appl. Math. Comput.,1976

5. DO CARMO M. P. 1992. Riemannian Geometry. Birkhäuser Verlag Boston. DO CARMO M. P. 1992. Riemannian Geometry. Birkhäuser Verlag Boston.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3