Energy-driven distribution of signal processing applications across wireless sensor networks

Author:

Shen Chung-Ching1,Plishker William L.1,Ko Dong-Ik2,Bhattacharyya Shuvra S.1,Goldsman Neil1

Affiliation:

1. University of Maryland, College Park, MD

2. Texas Instruments

Abstract

Wireless sensor network (WSN) applications have been studied extensively in recent years. Such applications involve resource-limited embedded sensor nodes that have small size and low power requirements. Based on the need for extended network lifetimes in WSNs in terms of energy use, the energy efficiency of computation and communication operations in the sensor nodes becomes critical. Digital Signal Processing (DSP) applications typically require intensive data processing operations and as a result are difficult to implement directly in resource-limited WSNs. In this article, we present a novel design methodology for modeling and implementing computationally intensive DSP applications applied to wireless sensor networks. This methodology explores efficient modeling techniques for DSP applications, including data sensing and processing; derives formulations of Energy-Driven Partitioning (EDP) for distributing such applications across wireless sensor networks; and develops efficient heuristic algorithms for finding partitioning results that maximize the network lifetime. To address such an energy-driven partitioning problem, this article provides a new way of aggregating data and reducing communication traffic among nodes based on application analysis. By considering low data token delivery points and the distribution of computation in the application, our approach finds energy-efficient trade-offs between data communication and computation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized energy clustering routing Protocol-WL;Journal of Information & Optimization Sciences;2023

2. Optimal Task Allocation Algorithms for Energy Constrained Multihop Wireless Networks;IEEE Sensors Journal;2019-09-01

3. Energy-Aware Task Allocation in WSNs;Mission-Oriented Sensor Networks and Systems: Art and Science;2019

4. A task allocation strategy for complex applications in heterogeneous cluster–based wireless sensor networks;International Journal of Distributed Sensor Networks;2018-08

5. Controlling Congestion in Wireless Sensor Networks Through Imperialist Competitive Algorithm;Wireless Personal Communications;2018-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3