A task allocation strategy for complex applications in heterogeneous cluster–based wireless sensor networks

Author:

Yin Xiang1,Zhang Kaiquan1,Li Bin1,Sangaiah Arun Kumar2,Wang Jin13ORCID

Affiliation:

1. College of Information Engineering, Yangzhou University, Yangzhou, China

2. School of Computing Science and Engineering, Vellore Institute of Technology, Vellore, India

3. College of Computer & Communication Engineering, Changsha University of Science & Technology, Changsha, China

Abstract

To a wireless sensor network, cooperation among multiple sensors is necessary when it executes applications that consist of several computationally intensive tasks. Most previous works in this field concentrated on energy savings as well as load balancing. However, these schemes merely considered the situations where only one type of resource is required which drastically constrains their practical applications. To alleviate this limitation, in this article, we investigate the issue of complex application allocation, where various distinctive types of resources are demanded. We propose a heuristic-based algorithm for distributing complex applications in clustered wireless sensor networks. The algorithm is partitioned into two phases, in the inter-cluster allocation stage, tasks of the application are allocated to various clusters with the purpose of minimizing energy consumption, and in the intra-cluster allocation stage, the task is distributed to appropriate sensor nodes with the consideration of both energy cost and workload balancing. In so doing, the energy dissipation can be reduced and balanced, and the lifetime of the system is extended. Simulations are conducted to evaluate the performance of the proposed algorithm, and the results demonstrate that the proposed algorithm is superior in terms of energy consumption, load balancing, and efficiency of task allocation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3