Abstract
It is proven that monotone circuits computing the perfect matching function on
n
-vertex graphs require Ω(
n
) depth. This implies an exponential gap between the depth of monotone and nonmonotone circuits.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Reference16 articles.
1. Monotone versus positive
2. The monotone circuit complexity of boolean functions
3. On a method for obtaining lower bounds on the complexity of individual monotone functions;ANDREEV A. E;Dokl. Ak. Nauk. SSSR,1985
4. GOLDMANN M. AND HASTAD J. A lower bound for monotone clique using a communication game. Manuscript. 10.1016/0020-0190(92)90184-W GOLDMANN M. AND HASTAD J. A lower bound for monotone clique using a communication game. Manuscript. 10.1016/0020-0190(92)90184-W
Cited by
131 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Separations in Proof Complexity and TFNP;Journal of the ACM;2024-08
2. Strong Algebras and Radical Sylvester-Gallai Configurations;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10
3. KRW Composition Theorems via Lifting;computational complexity;2024-04-29
4. Top-Down Lower Bounds for Depth-Four Circuits;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06
5. On Protocols for Monotone Feasible Interpolation;ACM Transactions on Computation Theory;2023-03-31