Separations in Proof Complexity and TFNP

Author:

Göös Mika1ORCID,Hollender Alexandros2ORCID,Jain Siddhartha3ORCID,Maystre Gilbert1ORCID,Pires William4ORCID,Robere Robert5ORCID,Tao Ran6ORCID

Affiliation:

1. EPFL, Lausanne, Switzerland

2. University of Oxford, Oxford, United Kingdom

3. UT Austin, Austin, United States

4. Columbia University, New York, United States

5. McGill University, Montreal, Canada

6. Carnegie Mellon University, Pittsburgh, United States

Abstract

It is well-known that Resolution proofs can be efficiently simulated by Sherali–Adams (SA) proofs. We show, however, that any such simulation needs to exploit huge coefficients: Resolution cannot be efficiently simulated by SA when the coefficients are written in unary. We also show that Reversible Resolution (a variant of MaxSAT Resolution) cannot be efficiently simulated by Nullstellensatz (NS). These results have consequences for total NP search problems. First, we characterise the classes PPADS, PPAD, SOPL by unary-SA, unary-NS, and Reversible Resolution, respectively. Second, we show that, relative to an oracle, \({\text{ PLS}} \not\subseteq {\text{ PPP}}\) , \({\text{ SOPL}} \not\subseteq {\text{ PPA}}\) , and \({\text{ EOPL}} \not\subseteq {\text{ UEOPL}}\) . In particular, together with prior work, this gives a complete picture of the black-box relationships between all classical TFNP classes introduced in the 1990s.

Funder

Swiss State Secretariat for Education, Research and Innovation

Quantum Systems Accelerator

DOE. W. P., R. R., and R. T.

NSERC

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3