GraVF-M

Author:

Engelhardt Nina1,So Hayden K.-H.1

Affiliation:

1. University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

Due to the irregular nature of connections in most graph datasets, partitioning graph analysis algorithms across multiple computational nodes that do not share a common memory inevitably leads to large amounts of interconnect traffic. Previous research has shown that FPGAs can outcompete software-based graph processing in shared memory contexts, but it remains an open question if this advantage can be maintained in distributed systems. In this work, we present GraVF-M, a framework designed to ease the implementation of FPGA-based graph processing accelerators for multi-FPGA platforms with distributed memory. Based on a lightweight description of the algorithm kernel, the framework automatically generates optimized RTL code for the whole multi-FPGA design. We exploit an aspect of the programming model to present a familiar message-passing paradigm to the user, while under the hood implementing a more efficient architecture that can reduce the necessary inter-FPGA network traffic by a factor equal to the average degree of the input graph. A performance model based on a theoretical analysis of the factors influencing performance serves to evaluate the efficiency of our implementation. With a throughput of up to 5.8GTEPS (billions of traversed edges per second) on a 4-FPGA system, the designs generated by GraVF-M compare favorably to state-of-the-art frameworks from the literature and reach 94% of the projected performance limit of the system.

Funder

Research Grants Council of Hong Kong

Croucher Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HashGrid: An optimized architecture for accelerating graph computing on FPGAs;Future Generation Computer Systems;2025-01

2. Optimising Graph Representation for Hardware Implementation of Graph Convolutional Networks for Event-Based Vision;Lecture Notes in Computer Science;2024

3. Distributed large-scale graph processing on FPGAs;Journal of Big Data;2023-06-04

4. Rethinking Design Paradigm of Graph Processing System with a CXL-like Memory Semantic Fabric;2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid);2023-05

5. ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS;ACM Transactions on Reconfigurable Technology and Systems;2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3