Neural Cloth Simulation

Author:

Bertiche Hugo1,Madadi Meysam1,Escalera Sergio1

Affiliation:

1. Universitat de Barcelona, Spain and Computer Vision Center, UAB, Spain

Abstract

We present a general framework for the garment animation problem through unsupervised deep learning inspired in physically based simulation. Existing trends in the literature already explore this possibility. Nonetheless, these approaches do not handle cloth dynamics. Here, we propose the first methodology able to learn realistic cloth dynamics unsupervisedly, and henceforth, a general formulation for neural cloth simulation. The key to achieve this is to adapt an existing optimization scheme for motion from simulation based methodologies to deep learning. Then, analyzing the nature of the problem, we devise an architecture able to automatically disentangle static and dynamic cloth subspaces by design. We will show how this improves model performance. Additionally, this opens the possibility of a novel motion augmentation technique that greatly improves generalization. Finally, we show it also allows to control the level of motion in the predictions. This is a useful, never seen before, tool for artists. We provide of detailed analysis of the problem to establish the bases of neural cloth simulation and guide future research into the specifics of this domain.

Funder

Ministerio de Economía y Competitividad

Institució Catalana de Recerca i Estudis Avançats

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural inpainting of folded fabrics with interactive editing;Computers & Graphics;2024-08

2. TDGar-Ani: temporal motion fusion model and deformation correction network for enhancing garment animation details;The Visual Computer;2024-07-30

3. Super-Resolution Cloth Animation with Spatial and Temporal Coherence;ACM Transactions on Graphics;2024-07-19

4. ContourCraft: Learning to Resolve Intersections in Neural Multi-Garment Simulations;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

5. An Empirical Investigation on Variational Autoencoder-Based Dynamic Modeling of Deformable Objects from RGB Data;2024 32nd Mediterranean Conference on Control and Automation (MED);2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3