Abstract
Assembly planning is the core of automating product assembly, maintenance, and recycling for modern industrial manufacturing. Despite its importance and long history of research, planning for mechanical assemblies when given the final assembled state remains a challenging problem. This is due to the complexity of dealing with arbitrary 3D shapes and the highly constrained motion required for real-world assemblies. In this work, we propose a novel method to efficiently plan physically plausible assembly motion and sequences for real-world assemblies. Our method leverages the assembly-by-disassembly principle and physics-based simulation to efficiently explore a reduced search space. To evaluate the generality of our method, we define a large-scale dataset consisting of thousands of physically valid industrial assemblies with a variety of assembly motions required. Our experiments on this new benchmark demonstrate we achieve a state-of-the-art success rate and the highest computational efficiency compared to other baseline algorithms. Our method also generalizes to rotational assemblies (e.g., screws and puzzles) and solves 80-part assemblies within several minutes.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Reference70 articles.
1. Designing effective step-by-step assembly instructions
2. Parallel RRT-based path planning for selective disassembly planning
3. Learning dexterous in-hand manipulation
4. Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540 Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献