Assemble Them All

Author:

Tian Yunsheng1,Xu Jie1,Li Yichen2,Luo Jieliang3,Sueda Shinjiro4,Li Hui3,Willis Karl D. D.3,Matusik Wojciech2

Affiliation:

1. MIT CSAIL

2. MITCSAIL

3. Autodesk Research

4. Texas A&M University

Abstract

Assembly planning is the core of automating product assembly, maintenance, and recycling for modern industrial manufacturing. Despite its importance and long history of research, planning for mechanical assemblies when given the final assembled state remains a challenging problem. This is due to the complexity of dealing with arbitrary 3D shapes and the highly constrained motion required for real-world assemblies. In this work, we propose a novel method to efficiently plan physically plausible assembly motion and sequences for real-world assemblies. Our method leverages the assembly-by-disassembly principle and physics-based simulation to efficiently explore a reduced search space. To evaluate the generality of our method, we define a large-scale dataset consisting of thousands of physically valid industrial assemblies with a variety of assembly motions required. Our experiments on this new benchmark demonstrate we achieve a state-of-the-art success rate and the highest computational efficiency compared to other baseline algorithms. Our method also generalizes to rotational assemblies (e.g., screws and puzzles) and solves 80-part assemblies within several minutes.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference70 articles.

1. Designing effective step-by-step assembly instructions

2. Parallel RRT-based path planning for selective disassembly planning

3. Learning dexterous in-hand manipulation

4. Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540 Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constructability-driven design of frame structures with state-space search methods;Automation in Construction;2024-11

2. Advancing Sustainable Construction: Discrete Modular Systems & Robotic Assembly;Sustainability;2024-08-04

3. Automatic Generation of Selective Disassembly Sequences for Augmented Reality-Guided Maintenance;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

4. Tight Motion Planning by Riemannian Optimization for Sliding and Rolling with Finite Number of Contact Points;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3