Interactive and Robust Mesh Booleans

Author:

Cherchi Gianmarco1,Pellacini Fabio2,Attene Marco3,Livesu Marco3

Affiliation:

1. University of Cagliari, Italy

2. Sapienza University of Rome, Italy

3. CNR IMATI, Italy

Abstract

Boolean operations are among the most used paradigms to create and edit digital shapes. Despite being conceptually simple, the computation of mesh Booleans is notoriously challenging. Main issues come from numerical approximations that make the detection and processing of intersection points inconsistent and unreliable, exposing implementations based on floating point arithmetic to many kinds of degeneracy and failure. Numerical methods based on rational numbers or exact geometric predicates have the needed robustness guarantees, that are achieved at the cost of increased computation times that, as of today, has always restricted the use of robust mesh Booleans to offline applications. We introduce an algorithm for Boolean operations with robustness guarantees that is capable of operating at interactive frame rates on meshes with up to 200K triangles. We evaluate our tool thoroughly, considering not only interactive applications but also batch processing of large collections of meshes, processing of huge meshes containing millions of elements and variadic Booleans of hundreds of shapes altogether. In all these experiments, we consistently outperform prior robust floating point methods by at least one order of magnitude.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference68 articles.

1. Thomas Alderighi , Luigi Malomo , Daniela Giorgi , Bernd Bickel , Paolo Cignoni , and Nico Pietroni . 2019. Volume-aware design of composite molds. ACM Transactions on Graphics ( 2019 ). Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Bernd Bickel, Paolo Cignoni, and Nico Pietroni. 2019. Volume-aware design of composite molds. ACM Transactions on Graphics (2019).

2. Metamolds

3. Direct repair of self-intersecting meshes

4. Marco Attene . 2018. As-exact-as-possible repair of unprintable STL files. Rapid Prototyping Journal ( 2018 ). Marco Attene. 2018. As-exact-as-possible repair of unprintable STL files. Rapid Prototyping Journal (2018).

5. Indirect Predicates for Geometric Constructions

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3