Computational aspects of Hensel-type univariate polynomial greatest common divisor algorithms

Author:

Miola Alfonso1,Yun David Y. Y.2

Affiliation:

1. Instituto per le Applicazioni del Calcolo (IAC), Roma, Italy

2. IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.

Abstract

Two Hensel-type univariate polynomial Greatest Common Divisor (GCD) algorithms are presented and compared. The regular linear Hensel construction is shown to be generally more efficient than the Zassenhaus quadratic construction. The UNIGCD algorithm for UNIvariate polynomial GCD computations, based on the regular Hensel construction is then presented and compared with the Modular algorithm based on the Chinese Remainder Algorithm. From both an analytical and an experimental point of view, the UNIGCD algorithm is shown to be preferable for many common univariate GCD computations. This is true even for dense polynomials, which was considered to be the most suitable case for the application of the Modular algorithm.

Publisher

Association for Computing Machinery (ACM)

Reference14 articles.

1. Factoring Polynomials Over Finite Fields

2. On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors

3. Polynomial Remainder Sequences and Determinants

4. Subresultants and Reduced Polynomial Remainder Sequences

5. {COL73} Collins G. E. "The Computing Time of Euclindean Algorithm" Stanford Artificial Intelligence Laboratory Memo AIM - 187 Stanford Computer Science Department Report CS - 331 January 1973. {COL73} Collins G. E. "The Computing Time of Euclindean Algorithm" Stanford Artificial Intelligence Laboratory Memo AIM - 187 Stanford Computer Science Department Report CS - 331 January 1973.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New bivariate Hensel lifting algorithm for n factors;ACM Communications in Computer Algebra;2019-12-17

2. Linear Hensel Lifting for Fp[x,y] and Z[x] with Cubic Cost;Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation;2019-07-08

3. A Verified Implementation of the Berlekamp–Zassenhaus Factorization Algorithm;Journal of Automated Reasoning;2019-06-17

4. A formalization of the Berlekamp-Zassenhaus factorization algorithm;Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs;2017-01-16

5. Using Sparse Interpolation in Hensel Lifting;Computer Algebra in Scientific Computing;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3