Subresultants and Reduced Polynomial Remainder Sequences

Author:

Collins George E.1

Affiliation:

1. Computer Sciences Department, University of Wisconsin, Madison, Wisconsin and Thomas J . Watson Research Center, Yorktown Heights, New York

Abstract

Let @@@@ be an integral domain, P(@@@@) the integral domain of polynomials over @@@@. Let P , Q ∈ P(@@@@) with m @@@@ deg ( P ) ≥ n = deg ( Q ) > 0. Let M be the matrix whose determinant defines the resultant of P and Q . Let M ij be the submatrix of M obtained by deleting the last j rows of P coefficients, the last j rows of Q coefficients and the last 2 j +1 columns, excepting column mnij (0 ≤ ij < n ). The polynomial R j ( x ) = ∑ i i =0 det ( M ij ) x i is the j-t subresultant of P and Q , R 0 being the resultant. If b = £( Q ), the leading coefficient of Q , then exist uniquely R , S ∈ P(@@@@) such that b m-n +1 P = QS + R with deg ( R ) < n ; define R( P , Q ) = R . Define P i ∈ P( F ), F the quotient field of @@@@, inductively: P 1 = P , P 2 = Q , P 3 = R P 1 , P 2 P i -2 = R( P i , P i +1 )/ c δ i -1 +1 i for i2 and n i +1 > 0, where c i = £( P i ), n i = deg ( P i ) and δ i = n i n i +1 . P 1 , P 2 , …, P k , for k ≥ 3, is called a reduced polynomial remainder sequence . Some of the main results are: (1) P i ∈ P(@@@@) for 1 ≤ ik ; (2) P k = ± A k R n k -1 -1 , when A k = Π k -2 i -2 c δ i -1 i -1) i ; (3) c δ k -1 -1 k P k = ± A k +1 R n k ; (4) R j = 0 for n k < j < n k -1 — 1. Taking @@@@ to be the integers I , or P r ( I ), these results provide new algorithms for computing resultant or greatest common divisors of univariate or multivariate polynomials. Theoretical analysis and extensive testing on a high-speed computer show the new g.c.d. algorithm to be faster than known algorithms by a large factor. When applied to bivariate polynomials, for example this factor grows rapidly with the degree and exceeds 100 in practical cases.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference6 articles.

1. The ALPAK system for non-numerical algebra on a digital computer;BROWN W. S.;Pt. I: Bell System Tech. J,1963

2. PM, a system for polynomial manipulation

Cited by 221 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subresultants of several univariate polynomials in Newton basis;Journal of Symbolic Computation;2025-05

2. A New Sparse Polynomial GCD by Separating Terms;Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation;2024-07-16

3. Parametric “non-nested” discriminants for multiplicities of univariate polynomials;Science China Mathematics;2024-03-08

4. Fast norm computation in smooth-degree Abelian number fields;Research in Number Theory;2023-11-10

5. A couple of catch-ups for the modified unit-circle zero location test;2023 25th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3