A Principled Approach to Secure Multi-core Processor Design with ReWire

Author:

Procter Adam1,Harrison William L.1,Graves Ian1,Becchi Michela1,Allwein Gerard2

Affiliation:

1. University of Missouri, Columbia, MO

2. U.S. Naval Research Laboratory, Washington, DC

Abstract

There is no such thing as high assurance without high assurance hardware. High assurance hardware is essential because any and all high assurance systems ultimately depend on hardware that conforms to, and does not undermine, critical system properties and invariants. And yet, high assurance hardware development is stymied by the conceptual gap between formal methods and hardware description languages used by engineers. This article advocates a semantics-directed approach to bridge this conceptual gap. We present a case study in the design of secure processors, which are formally derived via principled techniques grounded in functional programming and equational reasoning. The case study comprises the development of secure single- and dual-core variants of a single processor, both based on a common semantic specification of the ISA. We demonstrate via formal equational reasoning that the dual-core processor respects a “no-write-down” information flow policy. The semantics-directed approach enables a modular and extensible style of system design and verification. The secure processors require only a very small amount of additional code to specify and implement, and their security verification arguments are concise and readable. Our approach rests critically on ReWire, a functional programming language providing a suitable foundation for formal verification of hardware designs. This case study demonstrates both ReWire’s expressiveness as a programming language and its power as a framework for formal, high-level reasoning about hardware systems.

Funder

Office of the Assistant Secretary of Defense for Research and Engineering

U.S. Department of Education under GAANN

NSF CAREER

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formalized High Level Synthesis with Applications to Cryptographic Hardware;Lecture Notes in Computer Science;2023

2. A Mechanized Semantic Metalanguage for High Level Synthesis;23rd International Symposium on Principles and Practice of Declarative Programming;2021-09-06

3. Strongly bounded termination with applications to security and hardware synthesis;Proceedings of the 5th ACM SIGPLAN International Workshop on Type-Driven Development;2020-08-09

4. The Mechanized Marriage of Effects and Monads with Applications to High-assurance Hardware;ACM Transactions on Embedded Computing Systems;2019-02-28

5. A core calculus for secure hardware;Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design;2017-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3