LIRS

Author:

Jiang Song1,Zhang Xiaodong1

Affiliation:

1. College of William and Mary, Williamsburg, VA

Abstract

Although LRU replacement policy has been commonly used in the buffer cache management, it is well known for its inability to cope with access patterns with weak locality. Previous work, such as LRU-K and 2Q, attempts to enhance LRU capacity by making use of additional history information of previous block references other than only the recency information used in LRU. These algorithms greatly increase complexity and/or can not consistently provide performance improvement. Many recently proposed policies, such as UBM and SEQ, improve replacement performance by exploiting access regularities in references. They only address LRU problems on certain specific and well-defined cases such as access patterns like sequences and loops. Motivated by the limits of previous studies, we propose an efficient buffer cache replacement policy, called Low Inter-reference Recency Set (LIRS). LIRS effectively addresses the limits of LRU by using recency to evaluate Inter-Reference Recency (IRR) for making a replacement decision. This is in contrast to what LRU does: directly using recency to predict next reference timing. At the same time, LIRS almost retains the same simple assumption of LRU to predict future access behavior of blocks. Our objectives are to effectively address the limits of LRU for a general purpose, to retain the low overhead merit of LRU, and to outperform those replacement policies relying on the access regularity detections. Conducting simulations with a variety of traces and a wide range of cache sizes, we show that LIRS significantly outperforms LRU, and outperforms other existing replacement algorithms in most cases. Furthermore, we show that the additional cost for implementing LIRS is trivial in comparison with LRU.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Amphisbaena: A Novel Persistent Buffer Management Strategy to Improve SMR Disk Performance;Applied Sciences;2024-01-11

2. An Efficient Deep Reinforcement Learning-Based Automatic Cache Replacement Policy in Cloud Block Storage Systems;IEEE Transactions on Computers;2024-01

3. Forecasting File Lifecycles for Intelligent Data Placement in Hierarchical Storage;2023 IEEE 35th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2023-10-17

4. Smart Cache Insertion and Promotion Policy for Content Delivery Networks;Proceedings of the 52nd International Conference on Parallel Processing;2023-08-07

5. DAC: A dynamic active and collaborative cache management scheme for solid state disks;Journal of Systems Architecture;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3