Dynamic statistical profiling of communication activity in distributed applications

Author:

Vetter Jeffrey1

Affiliation:

1. Lawrence Livermore National Laboratory, Livermore, CA

Abstract

Performance analysis of communication activity for a terascale application with traditional message tracing can be overwhelming in terms of overhead, perturbation, and storage. We propose a novel alternative that enables dynamic statistical profiling of an application's communication activity using message sampling. We have implemented an operational prototype, named P HOTON , and our evidence shows that this new approach can provide an accurate, low-overhead, tractable alternative for performance analysis of communication activity. P HOTON consists of two components: a Message Passing Interface (MPI) profiling layer that implements sampling and analysis, and a modified MPI runtime that appends a small but necessary amount of information to individual messages. More importantly, this alternative enables an assortment of runtime analysis techniques so that, in contrast to post-mortem, trace-based techniques, the raw performance data can be jettisoned immediately after analysis. Our investigation shows that message sampling can reduce overhead to imperceptible levels for many applications. Experiments on several applications demonstrate the viability of this approach. For example, with one application, our technique reduced the analysis overhead from 154% for traditional tracing to 6% for statistical profiling. We also evaluate different sampling techniques in this framework. The coverage of the sample space provided by purely random sampling is superior to counter- and timer-based sampling. Also, P HOTON 's design reveals that frugal modifications to the MPI runtime system could facilitate such techniques on production computing systems, and it suggests that this sampling technique could execute continuously for long-running applications.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-Centric Performance Analysis for Large-Scale Parallel Applications;IEEE Transactions on Parallel and Distributed Systems;2024-07

2. Production-Run Noise Detection;Performance Analysis of Parallel Applications for HPC;2023

3. Graph Analysis for Scalability Analysis;Performance Analysis of Parallel Applications for HPC;2023

4. Informed Memory Access Monitoring;Performance Analysis of Parallel Applications for HPC;2023

5. Locating and categorizing inefficient communication patterns in HPC systems using inter-process communication traces;Journal of Systems and Software;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3