1. Mohamed S Abdelfattah et al. 2020. Best of Both Worlds: AutoML Codesign of a CNN and its Hardware Accelerator. arXiv preprint arXiv:2002.05022 (2020). Mohamed S Abdelfattah et al. 2020. Best of Both Worlds: AutoML Codesign of a CNN and its Hardware Accelerator. arXiv preprint arXiv:2002.05022 (2020).
2. Aayush Ankit et al. 2019 . PUMA: A programmable ultra-efficient memristor-based accelerator for machine learning inference. In ASPLOS. 715--731. Aayush Ankit et al. 2019. PUMA: A programmable ultra-efficient memristor-based accelerator for machine learning inference. In ASPLOS. 715--731.
3. Han Cai et al. 2018 . Proxylessnas: Direct neural architecture search on target task and hardware. arXiv preprint arXiv:1812.00332 (2018). Han Cai et al. 2018. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv preprint arXiv:1812.00332 (2018).
4. Indranil Chakraborty et al. 2020 . Geniex: A generalized approach to emulating non-ideality in memristive xbars using neural networks. In 2020 DAC. IEEE , 1--6. Indranil Chakraborty et al. 2020. Geniex: A generalized approach to emulating non-ideality in memristive xbars using neural networks. In 2020 DAC. IEEE, 1--6.
5. Kanghyun Choi et al. 2020 . DANCE: Differentiable Accelerator/Network Co-Exploration. arXiv preprint arXiv:2009.06237 (2020). Kanghyun Choi et al. 2020. DANCE: Differentiable Accelerator/Network Co-Exploration. arXiv preprint arXiv:2009.06237 (2020).