1. LIDAR–camera fusion for road detection using fully convolutional neural networks
2. Progressive LiDAR adaptation for road detection
3. Fan , R. , Wang , H. , Cai , P. and Liu , M ., 2020, August. Sne-roadseg: Incorporating surface normal information into semantic segmentation for accurate freespace detection . In European Conference on Computer Vision (pp. 340--356) . Springer, Cham. Fan, R., Wang, H., Cai, P. and Liu, M., 2020, August. Sne-roadseg: Incorporating surface normal information into semantic segmentation for accurate freespace detection. In European Conference on Computer Vision (pp. 340--356). Springer, Cham.
4. Hazirbas , C. , Ma , L. , Domokos , C. and Cremers , D ., 2016, November. Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture . In Asian conference on computer vision (pp. 213--228) . Springer, Cham. Hazirbas, C., Ma, L., Domokos, C. and Cremers, D., 2016, November. Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture. In Asian conference on computer vision (pp. 213--228). Springer, Cham.
5. LeCun , Y. , Kavukcuoglu , K. and Farabet , C ., 2010, May. Convolutional networks and applications in vision . In Proceedings of 2010 IEEE international symposium on circuits and systems (pp. 253--256) . IEEE. LeCun, Y., Kavukcuoglu, K. and Farabet, C., 2010, May. Convolutional networks and applications in vision. In Proceedings of 2010 IEEE international symposium on circuits and systems (pp. 253--256). IEEE.