1. S. Arnold 2021 . When maml can adapt fast and how to assist when it cannot . In International Conference on Artificial Intelligence and Statistics. PMLR, 244--252 . S. Arnold et al. 2021. When maml can adapt fast and how to assist when it cannot. In International Conference on Artificial Intelligence and Statistics. PMLR, 244--252.
2. G. S. Dhillon etal 2020. A baseline for few-shot image classification. ICLR (2020). G. S. Dhillon et al. 2020. A baseline for few-shot image classification. ICLR (2020).
3. C. Finn etal 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML. PMLR 1126--1135. C. Finn et al. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML. PMLR 1126--1135.
4. T. Hospedales etal 2020. Meta-learning in neural networks: A survey. arXiv preprint arXiv:2004.05439 (2020). T. Hospedales et al. 2020. Meta-learning in neural networks: A survey. arXiv preprint arXiv:2004.05439 (2020).
5. In-Datacenter Performance Analysis of a Tensor Processing Unit