An Automatic and a Machine-assisted Method to Clean Bilingual Corpus

Author:

Srivastava Jyoti1,Sanyal Sudip2,Srivastava Ashish Kumar1

Affiliation:

1. Madanapalle Institute of Technology 8 Science, Madanapalle, Andhra Pradesh, India

2. BML Munjal University, Gurugram, Haryana, India

Abstract

Two different methods of corpus cleaning are presented in this article. One is a machine-assisted technique, which is good to clean small-sized parallel corpus, and the other is an automatic method, which is suitable for cleaning large-sized parallel corpus. A baseline SMT (MOSES) system is used to evaluate these methods. The machine-assisted technique used two features: word alignment and length of the source and target language sentence. These features are used to detect mistranslations in the corpus, which are then handled by a human translator. Experiments of this method are conducted on the English-to-Indian Language Machine Translation (EILMT) corpus (English-Hindi). The Bilingual Evaluation Understudy (BLEU) score is improved by 0.47% for the clean corpus. Automatic method of corpus cleaning uses a combination of two features. One feature is length of source and target language sentence and the second feature is Viterbi alignment score generated by Hidden Markov Model for each sentence pair. Two different threshold values are used for these two features. These values are decided by using a small-sized manually annotated parallel corpus of 206 sentence pairs. Experiments of this method are conducted on the HindEnCorp corpus, released in the workshop of the Association of Computational Linguistics (ACL 2014). The BLEU score is improved by 0.6% on clean corpus. A comparison of the two methods is also presented on EILMT corpus.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3