Toward a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems

Author:

Ferrando Angelo1ORCID,Dennis Louise A.1,Cardoso Rafael C.1,Fisher Michael1,Ancona Davide2ORCID,Mascardi Viviana3

Affiliation:

1. The University of Manchester, Manchester, United Kingdom

2. University of Genova, Genova, Italy

3. University of Genova, Italy

Abstract

When applying formal verification to a system that interacts with the real world, we must use a model of the environment. This model represents an abstraction of the actual environment, so it is necessarily incomplete and hence presents an issue for system verification. If the actual environment matches the model, then the verification is correct; however, if the environment falls outside the abstraction captured by the model, then we cannot guarantee that the system is well behaved. A solution to this problem consists in exploiting the model of the environment used for statically verifying the system’s behaviour and, if the verification succeeds, using it also for validating the model against the real environment via runtime verification. The article discusses this approach and demonstrates its feasibility by presenting its implementation on top of a framework integrating the Agent Java PathFinder model checker. A high-level Domain Specific Language is used to model the environment in a user-friendly way; the latter is then compiled to trace expressions for both static formal verification and runtime verification. To evaluate our approach, we apply it to two different case studies: an autonomous cruise control system and a simulation of the Mars Curiosity rover.

Funder

“Robotics and AI in Hazardous Environments”

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trustworthy Autonomous Systems Through Verifiability;Computer;2023-02

2. Verifiable autonomy: From theory to applications;AI Communications;2022-09-20

3. Resilience, reliability, and coordination in autonomous multi-agent systems;AI Communications;2022-09-20

4. Formal modeling and verification of multi-robot interactive scenarios in service settings;Proceedings of the IEEE/ACM 10th International Conference on Formal Methods in Software Engineering;2022-05-18

5. Verifying Autonomous Systems;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3