An analytical model for cache replacement policy performance

Author:

Guo Fei1,Solihin Yan1

Affiliation:

1. North Carolina State University

Abstract

Due to the increasing gap between CPU and memory speed, cache performance plays an increasingly critical role in determining the overall performance of microprocessor systems. One of the important factors that a affect cache performance is the cache replacement policy. Despite the importance, current analytical cache performance models ignore the impact of cache replacement policies on cache performance. To the best of our knowledge, this paper is the first to propose an analytical model which predicts the performance of cache replacement policies. The input to our model is a simple circular sequence profiling of each application, which requires very little storage overhead. The output of the model is the predicted miss rates of an application under different replacement policies. The model is based on probability theory and utilizes Markov processes to compute each cache access' miss probability. The model realistic assumptions and relies solely on the statistical properties of the application, without relying on heuristics or rules of thumbs. The model's run time is less than 0.1 seconds, much lower than that of trace simulations. We validate the model by comparing the predicted miss rates of seventeen Spec2000 and NAS benchmark applications against miss rates obtained by detailed execution-driven simulations, across a range of different cache sizes, associativities, and four replacement policies, and show that the model is very accurate. The model's average prediction error is 1.41%,and there are only 14 out of 952 validation points in which the prediction errors are larger than 10%.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3