An analytical cache model

Author:

Agarwal A.1,Hennessy J.2,Horowitz M.2

Affiliation:

1. Massachusetts Institute of Technology, Cambridge

2. Stanford Univ., Stanford, CA

Abstract

Trace-driven simulation and hardware measurement are the techniques most often used to obtain accurate performance figures for caches. The former requires a large amount of simulation time to evaluate each cache configuration while the latter is restricted to measurements of existing caches. An analytical cache model that uses parameters extracted from address traces of programs can efficiently provide estimates of cache performance and show the effects of varying cache parameters. By representing the factors that affect cache performance, we develop an analytical model that gives miss rates for a given trace as a function of cache size, degree of associativity, block size, subblock size, multiprogramming level, task switch interval, and observation interval. The predicted values closely approximate the results of trace-driven simulations, while requiring only a small fraction of the computation cost.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference25 articles.

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AdaCache: A Disaggregated Cache System with Adaptive Block Size for Cloud Block Storage;2023 IEEE 16th International Conference on Cloud Computing (CLOUD);2023-07

2. FLORIA: A Fast and Featherlight Approach for Predicting Cache Performance;Proceedings of the 37th International Conference on Supercomputing;2023-06-21

3. DGEMM Optimization Oriented to ARM SVE Instruction Set Architecture;2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS);2023-01

4. Fine‐Grained Memory Profiling of GPGPU Kernels;Computer Graphics Forum;2022-10

5. FaSe;Proceedings of the 59th ACM/IEEE Design Automation Conference;2022-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3