Automatic logging of operating system effects to guide application-level architecture simulation

Author:

Narayanasamy Satish1,Pereira Cristiano1,Patil Harish2,Cohn Robert2,Calder Brad1

Affiliation:

1. University of California, San Diego

2. Intel Corporation

Abstract

Modern architecture research relies heavily on application-level detailed pipeline simulation. A time consuming part of building a simulator is correctly emulating the operating system effects, which is required even if the goal is to simulate just the application code, in order to achieve functional correctness of the application's execution. Existing application-level simulators require manually hand coding the emulation of each and every possible system effect (e.g., system call, interrupt, DMA transfer) that can impact the application's execution. Developing such an emulator for a given operating system is a tedious exercise, and it can also be costly to maintain it to support newer versions of that operating system. Furthermore, porting the emulator to a completely different operating system might involve building it all together from scratch.In this paper, we describe a tool that can automatically log operating system effects to guide architecture simulation of application code. The benefits of our approach are: (a) we do not have to build or maintain any infrastructure for emulating the operating system effects, (b) we can support simulation of more complex applications on our application-level simulator, including those applications that use asynchronous interrupts, DMA transfers, etc., and (c) using the system effects logs collected by our tool, we can deterministically re-execute the application to guide architecture simulation that has reproducible results.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ELFies: Executable Region Checkpoints for Performance Analysis and Simulation;2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO);2021-02-27

2. A Survey of Cache Simulators;ACM Computing Surveys;2021-01-31

3. Selective Symbolic Type-Guided Checkpointing and Restoration for Autonomous Vehicle Repair;Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops;2020-06-27

4. Using Local Clocks to Reproduce Concurrency Bugs;IEEE Transactions on Software Engineering;2018-11-01

5. PEMU;ACM SIGPLAN Notices;2015-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3