Shellability is NP-complete

Author:

Goaoc Xavier1,Paták Pavel2,Patáková Zuzana3,Tancer Martin4,Wagner Uli5ORCID

Affiliation:

1. Université de Lorraine, CNRS, INRIA, LORIA F-54000, France

2. IST Austria, Austria and Department of Applied Mathematics, Charles University, Czech Republic

3. IST Austria, Austria and Computer Science Institute, Charles University, Czech Republic

4. Department of Applied Mathematics, Charles University, Czech Republic

5. IST Austria, Klosterneuburg, Austria

Abstract

We prove that for every d ≥ 2, deciding if a pure, d -dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d ≥ 2 and k ≥ 0, deciding if a pure, d -dimensional, simplicial complex is k -decomposable is NP-hard. For d ≥ 3, both problems remain NP-hard when restricted to contractible pure d -dimensional complexes. Another simple corollary of our result is that it is NP-hard to decide whether a given poset is CL-shellable.

Funder

IST Austria

Czech-French collaboration project EMBEDS II

Charles University project

GAČR

Improvement of Internationalization in the Field of Research and Development at Charles University

IUF. M. Tancer

MSCA-IF

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference31 articles.

1. Recognizing shrinkable complexes is NP-complete;Attali D.;Journal of Computational Geometry,2016

2. The Geometric Topology of 3-Manifolds

3. Shellable and Cohen-Macaulay Partially Ordered Sets

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NP-Hardness of Computing PL Geometric Category in Dimension 2;SIAM Journal on Discrete Mathematics;2023-09-06

2. Shellability Is Hard Even for Balls;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

3. Shellable tilings on relative simplicial complexes and their h-vectors;Advances in Geometry;2023-01-31

4. Shellings from Relative Shellings, with an Application to NP-Completeness;Discrete & Computational Geometry;2021-02-19

5. Shellings and Sheddings Induced by Collapses;SIAM Journal on Discrete Mathematics;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3