Shellable tilings on relative simplicial complexes and their h-vectors

Author:

Welschinger Jean-Yves1

Affiliation:

1. Institut Camille Jordan, Université Lyon 1, 43 blvd. du 11 novembre 1918, 69622 Villeurbanne cedex , France

Abstract

Abstract An h-tiling on a finite simplicial complex is a partition of its geometric realization by maximal simplices deprived of several codimension one faces together with possibly their remaining face of highest codimension. In this last case, the tiles are said to be critical. An h-tiling thus induces a partitioning of its face poset by closed or semi-open intervals. We prove the existence of h-tilings on every finite simplicial complex after finitely many stellar subdivisions at maximal simplices. These tilings are moreover shellable. We also prove that the number of tiles of each type used by a tiling, encoded by its h-vector, is determined by the number of critical tiles of each index it uses, encoded by its critical vector. In the case of closed triangulated manifolds, these vectors satisfy some palindromic property. We finally study the behavior of tilings under any stellar subdivision.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3