Affiliation:
1. University of Chicago, Chicago, IL, USA
Abstract
In many deployments, computer systems are underutilized -- meaning that applications have performance requirements that demand less than full system capacity. Ideally, we would take advantage of this under-utilization by allocating system resources so that the performance requirements are met and energy is minimized. This optimization problem is complicated by the fact that the performance and power consumption of various system configurations are often application -- or even input -- dependent. Thus, practically, minimizing energy for a performance constraint requires fast, accurate estimations of application-dependent performance and power tradeoffs. This paper investigates machine learning techniques that enable energy savings by learning Pareto-optimal power and performance tradeoffs. Specifically, we propose LEO, a probabilistic graphical model-based learning system that provides accurate online estimates of an application's power and performance as a function of system configuration. We compare LEO to (1) offline learning, (2) online learning, (3) a heuristic approach, and (4) the true optimal solution. We find that LEO produces the most accurate estimates and near optimal energy savings.
Publisher
Association for Computing Machinery (ACM)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献