New techniques for best-match retrieval

Author:

Shasha Dennis1,Wang Tsong-Li1

Affiliation:

1. New York Univ., New York

Abstract

A scheme to answer best-match queries from a file containing a collection of objects is described. A best-match query is to find the objects in the file that are closest (according to some (dis)similarity measure) to a given target. Previous work [5, 331] suggests that one can reduce the number of comparisons required to achieve the desired results using the triangle inequality, starting with a data structure for the file that reflects some precomputed intrafile distances. We generalize the technique to allow the optimum use of any given set of precomputed intrafile distances. Some empirical results are presented which illustrate the effectiveness of our scheme, and its performance relative to previous algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying Subway Passenger Flow under Large-Scale Events Using Symbolic Aggregate Approximation Algorithm;Transportation Research Record: Journal of the Transportation Research Board;2021-10-18

2. A GPU Acceleration Framework for Motif and Discord Based Pattern Mining;IEEE Transactions on Parallel and Distributed Systems;2021-08-01

3. A Generalized Approach for Reducing Expensive Distance Calls for A Broad Class of Proximity Problems;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

4. Motif Discovery in Speech: Application to Monitoring Alzheimer’s Disease;Current Alzheimer Research;2017-08-22

5. Special Metrics;Advanced Information and Knowledge Processing;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3