The effect of instruction set complexity on program size and memory performance

Author:

Davidson Jack W.1,Vaughan Richard A.1

Affiliation:

1. Univ. of Virginia, Charleston

Abstract

One potential disadvantage of a machine with a reduced instruction set is that object programs may be substantially larger than those for a machine with a richer, more complex instruction set. The main reason is that a small instruction set will require more instructions to implement the same function. In addition, the tendency of RISC machines to use fixed length instructions with a few instruction formats also increases object program size. It has been conjectured that the resulting larger programs could adversely affect memory performance and bus traffic. In this paper we report the results of a set of experiments to isolate and determine the effect of instruction set complexity on cache memory performance and bus traffic. Three high-level language compilers were constructed for machines with instruction sets of varying degrees of complexity. Using a set of benchmark programs, we evaluated the effect of instruction set complexity had on program size. Five of the programs were used to perform a set of trace-driven simulations to study each machine's cache and bus performance. While we found that the miss ratio is affected by object program size, it appears that this can be corrected by simplying increasing the size of the cache. Our measurements of bus traffic, however, show that even with large caches, machines with simple instruction sets can expect substantially more main memory reads than machines with dense object programs.

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Code Positioning for VLIW Architectures;High-Performance Computing and Networking;2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3