Tight Analysis of Parallel Randomized Greedy MIS

Author:

Fischer Manuela1,Noever Andreas1

Affiliation:

1. ETH Zurich, Zurich, Switzerland

Abstract

We provide a tight analysis that settles the round complexity of the well-studied parallel randomized greedy MIS algorithm, thus answering the main open question of Blelloch, Fineman, and Shun [SPAA’12]. The parallel/distributed randomized greedy Maximal Independent Set (MIS) algorithm works as follows. An order of the vertices is chosen uniformly at random. Then, in each round, all vertices that appear before their neighbors in the order are added to the independent set and removed from the graph along with their neighbors. The main question of interest is the number of rounds it takes until the graph is empty. This algorithm has been studied since 1987, initiated by Coppersmith, Raghavan, and Tompa [FOCS’87], and the previously best known bounds were O (log n ) rounds in expectation for Erdős-Rényi random graphs by Calkin and Frieze [Random Struc. Alg.’90] and O (log 2 n ) rounds with high probability for general graphs by Blelloch, Fineman, and Shun [SPAA’12]. We prove a high probability upper bound of O (log n ) on the round complexity of this algorithm in general graphs and that this bound is tight. This also shows that parallel randomized greedy MIS is as fast as the celebrated algorithm of Luby [STOC’85, JALG’86].

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Provably-Efficient and Internally-Deterministic Parallel Union-Find;Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures;2023-06-17

2. Almost 3-Approximate Correlation Clustering in Constant Rounds;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10

3. Time-Optimal Sublinear Algorithms for Matching and Vertex Cover;2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS);2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3