Synthesizing transformations on hierarchically structured data

Author:

Yaghmazadeh Navid1,Klinger Christian2,Dillig Isil1,Chaudhuri Swarat3

Affiliation:

1. University of Texas at Austin, USA

2. University of Freiburg, Germany

3. Rice University, USA

Abstract

This paper presents a new approach for synthesizing transformations on tree-structured data, such as Unix directories and XML documents. We consider a general abstraction for such data, called hierarchical data trees (HDTs) and present a novel example-driven synthesis algorithm for HDT transformations. Our central insight is to reduce the problem of synthesizing tree transformers to the synthesis of list transformations that are applied to the paths of the tree. The synthesis problem over lists is solved using a new algorithm that combines SMT solving and decision tree learning. We have implemented our technique in a system called HADES and show that HADES can automatically synthesize a variety of interesting transformations collected from online forums.

Funder

National Science Foundation

Air Force Research Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recursive Program Synthesis using Paramorphisms;Proceedings of the ACM on Programming Languages;2024-06-20

2. Automated Translation of Functional Big Data Queries to SQL;Proceedings of the ACM on Programming Languages;2023-04-06

3. Deterministic Graph-Walking Program Mining;Advanced Data Mining and Applications;2022

4. Active Learning for Inference and Regeneration of Applications that Access Databases;ACM Transactions on Programming Languages and Systems;2021-02

5. Inductive program synthesis over noisy data;Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2020-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3