Affiliation:
1. North Carolina State University, USA
2. University of Texas at Austin, USA
Abstract
Big data analytics frameworks like Apache Spark and Flink enable users to implement queries over large, distributed databases using functional APIs. In recent years, these APIs have grown in popularity because their functional interfaces abstract away much of the minutiae of distributed programming required by traditional query languages like SQL. However, the convenience of these APIs comes at a cost because functional queries are often less efficient than their SQL counterparts. Motivated by this observation, we present a new technique for automatically transpiling functional queries to SQL. While our approach is based on the standard paradigm of counterexample-guided inductive synthesis, it uses a novel
column-wise decomposition
technique to split the synthesis task into smaller subquery synthesis problems. We have implemented this approach as a new tool called RDD2SQL for translating Spark RDD queries to SQL and empirically evaluate the effectiveness of RDD2SQL on a set of real-world RDD queries. Our results show that (1) most RDD queries can be translated to SQL, (2) our tool is very effective at automating this translation, and (3) performing this translation offers significant performance benefits.
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献