Affiliation:
1. University of Colorado at Boulder, Boulder, CO
Abstract
On-chip communication, including short, often-multicast, latency-critical coherence and synchronization messages, and long, unicast, throughput-sensitive data transfers, limits the power efficiency and performance scalability of many-core chip-multiprocessor systems. This article analyzes on-chip communication challenges and studies the characteristics of existing electrical and emerging nanophotonic interconnect. Iris, a CMOS-compatible high-performance low-power nanophotonic on-chip network, is thus introduced. Iris's circuit-switched subnetwork supports throughput-sensitive data transfer. Iris's optical-antenna-array-based broadcast--multicast subnetwork optimizes latency-critical traffic and supports the path setup of circuit-switched communication. Overall, the proposed nanophotonic network design offers an on-chip communication backplane that is power efficient while demonstrating low latency and high throughput.
Funder
Division of Computing and Communication Foundations
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献