memif

Author:

Lin Felix Xiaozhu1,Liu Xu2

Affiliation:

1. Purdue University, West Lafayette, IN, USA

2. College of William & Mary, Williamsburg, VA, USA

Abstract

To harness a heterogeneous memory hierarchy, it is advantageous to integrate application knowledge in guiding frequent memory move, i.e., replicating or migrating virtual memory regions. To this end, we present memif, a protected OS service for asynchronous, hardware-accelerated memory move. Compared to the state of the art -- page migration in Linux, memif incurs low overhead and low latency; in order to do so, it not only redefines the semantics of kernel interface but also overhauls the underlying mechanisms, including request/completion management, race handling, and DMA engine configuration. We implement memif in Linux for a server-class system-on-chip that features heterogeneous memories. Compared to the current Linux page migration, memif reduces CPU usage by up to 15% for small pages and by up to 38x for large pages; in continuously serving requests, memif has no need for request batching and reduces latency by up to 63%. By crafting a small runtime atop memif, we improve the throughputs for a set of streaming workloads by up to 33%. Overall, memif has opened the door to software management of heterogeneous memory.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PatternS: An intelligent hybrid memory scheduler driven by page pattern recognition;Journal of Systems Architecture;2024-08

2. A unified hybrid memory system for scalable deep learning and big data applications;Journal of Parallel and Distributed Computing;2024-04

3. Compiler-assisted Data Placement for Heterogeneous Memory Systems;IEICE Electronics Express;2024

4. PMShifter;Proceedings of the 13th ACM SIGOPS Asia-Pacific Workshop on Systems;2022-08-23

5. Sibyl;Proceedings of the 49th Annual International Symposium on Computer Architecture;2022-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3