Improving hash join performance through prefetching

Author:

Chen Shimin1,Ailamaki Anastassia2,Gibbons Phillip B.1,Mowry Todd C.3

Affiliation:

1. Intel Research Pittsburgh, Pittsburgh, PA

2. Carnegie Mellon University, Pittsburgh, PA

3. Carnegie Mellon University and Intel Research Pittsburgh, Pittsburgh, PA

Abstract

Hash join algorithms suffer from extensive CPU cache stalls. This article shows that the standard hash join algorithm for disk-oriented databases (i.e. GRACE) spends over 80% of its user time stalled on CPU cache misses, and explores the use of CPU cache prefetching to improve its cache performance. Applying prefetching to hash joins is complicated by the data dependencies, multiple code paths, and inherent randomness of hashing. We present two techniques, group prefetching and software-pipelined prefetching , that overcome these complications. These schemes achieve 1.29--4.04X speedups for the join phase and 1.37--3.49X speedups for the partition phase over GRACE and simple prefetching approaches. Moreover, compared with previous cache-aware approaches (i.e. cache partitioning), the schemes are at least 36% faster on large relations and do not require exclusive use of the CPU cache to be effective. Finally, comparing the elapsed real times when disk I/Os are in the picture, our cache prefetching schemes achieve 1.12--1.84X speedups for the join phase and 1.06--1.60X speedups for the partition phase over the GRACE hash join algorithm.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference34 articles.

1. An effective on-chip preloading scheme to reduce data access penalty

2. Chen S. 2005. Redesigning database systems in light of CPU cache prefetching. Ph.D. thesis Carnegie Mellon University. Chen S. 2005. Redesigning database systems in light of CPU cache prefetching. Ph.D. thesis Carnegie Mellon University.

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asynchronous Memory Access Unit: Exploiting Massive Parallelism for Far Memory Access;ACM Transactions on Architecture and Code Optimization;2024-09-14

2. Simple, Efficient, and Robust Hash Tables for Join Processing;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

3. Tyche: An Efficient and General Prefetcher for Indirect Memory Accesses;ACM Transactions on Architecture and Code Optimization;2024-03-23

4. CoroGraph: Bridging Cache Efficiency and Work Efficiency for Graph Algorithm Execution;Proceedings of the VLDB Endowment;2023-12

5. Decoupled Vector Runahead;56th Annual IEEE/ACM International Symposium on Microarchitecture;2023-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3