Tyche: An Efficient and General Prefetcher for Indirect Memory Accesses

Author:

Xue Feng1ORCID,Han Chenji1ORCID,Li Xinyu1ORCID,Wu Junliang1ORCID,Zhang Tingting2ORCID,Liu Tianyi3ORCID,Hao Yifan4ORCID,Du Zidong4ORCID,Guo Qi4ORCID,Zhang Fuxin4ORCID

Affiliation:

1. State Key Lab of Processors, Institute of Computing Technology, CAS, Beijing, China and University of Chinese Academy of Sciences, Beijing, China

2. Loongson Technology Co., Ltd., Beijing, China and Institute of Computing Technology, CAS, Beijing, China

3. The University of Texas at San Antonio, San Antonio, TX, USA

4. State Key Lab of Processors, Institute of Computing Technology, CAS, Beijing, China

Abstract

Indirect memory accesses (IMAs, i.e., A [ f ( B [ i ])]) are typical memory access patterns in applications such as graph analysis, machine learning, and database. IMAs are composed of producer-consumer pairs, where the consumers’ memory addresses are derived from the producers’ memory data. Due to the built-in value-dependent feature, IMAs exhibit poor locality, making prefetching ineffective. Hindered by the challenges of recording the potentially complex graphs of instruction dependencies among IMA producers and consumers, current state-of-the-art hardware prefetchers either (a) exhibit inadequate IMA identification abilities or (b) rely on the run-ahead mechanism to prefetch IMAs intermittently and insufficiently. To solve this problem, we propose Tyche, 1 an efficient and general hardware prefetcher to enhance IMA performance. Tyche adopts a bilateral propagation mechanism to precisely excavate the instruction dependencies in simple chains with moderate length (rather than complex graphs). Based on the exact instruction dependencies, Tyche can accurately identify various IMA patterns, including nonlinear ones, and generate accurate prefetching requests continuously. Evaluated on broad benchmarks, Tyche achieves an average performance speedup of 16.2% over the state-of-the-art spatial prefetcher Berti. More importantly, Tyche outperforms the state-of-the-art IMA prefetchers IMP, Gretch, and Vector Runahead, by 15.9%, 12.8%, and 10.7%, respectively, with a lower storage overhead of only 0.57 KB.

Funder

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3